Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique

نویسندگان

  • F. Arabloo Department of Materials Science and Engineering, School of Engineering , Shiraz University, Shiraz, Iran
  • N. Anjabin Department of Materials Science and Engineering, School of Engineering , Shiraz University, Shiraz, Iran
چکیده مقاله:

Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental investigation of FCG behavior under various loading and environmental conditions is time-consuming and expensive, applying a reliable methodology for prediction of this property is essential. In this regard, a modeling technique based on least square support vector machine (LSSVM) framework is employed for prediction of FCG behavior of three different alloys including, Ti-6Al-4V alloy and two Cu-strengthened high strength low alloy (HSLA) steels in the air and corrosive media. The parameters of the developed model were calculated employing the coupled simulated annealing optimization technique. The performance and accuracy of the developed models were tested and validated by their ability to predict the experimental data. Statistical error analyses indicated that the developed model can satisfactorily represent the experimental data with high accuracy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

Hybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine

In hybrid simulation, the structure is divided into numerical and physical substructures to achieve more accurate responses in comparison to a full computational analysis. As a consequence of the lack of test facilities and actuators, and the budget limitation, only a few substructures can be modeled experimentally, whereas the others have to be modeled numerically. In this paper, a new hybrid ...

متن کامل

Clustering technique-based least square support vector machine for EEG signal classification

This paper presents a new approach called clustering technique-based least square support vector machine (CT-LS-SVM) for the classification of EEG signals. Decision making is performed in two stages. In the first stage, clustering technique (CT) has been used to extract representative features of EEG data. In the second stage, least square support vector machine (LS-SVM) is applied to the extra...

متن کامل

Support Vector Machine and Least Square Support Vector Machine Stock Forecasting Models

This paper explores the Support Vector Machine and Least Square Support Vector Machine models in stock forecasting. Three prevailing forecasting techniques General Autoregressive Conditional Heteroskedasticity (GARCH), Support Vector Regression (SVR) and Least Square Support Vector Machine (LSSVM) are combined with the wavelet kernel to form three novel algorithms Wavelet-based GARCH (WL_GARCH)...

متن کامل

Credit Risk Evaluation with Least Square Support Vector Machine

Credit risk evaluation has been the major focus of financial and banking industry due to recent financial crises and regulatory concern of Basel II. Recent studies have revealed that emerging artificial intelligent techniques are advantageous to statistical models for credit risk evaluation. In this study, we discuss the use of least square support vector machine (LSSVM) technique to design a c...

متن کامل

Breast cancer diagnosis using least square support vector machine

The use of machine learning tools in medical diagnosis is increasing gradually. This is mainly because the effectiveness of classification and recognition systems has improved in a great deal to help medical experts in diagnosing diseases. Such a disease is breast cancer, which is a very common type of cancer among woman. In this paper, breast cancer diagnosis was conducted using least square s...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 1

صفحات  64- 73

تاریخ انتشار 2019-04-28

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023